Crystal structure of Ge₄Se₉: a new germanium selenide with Se₂ pairs breaking the edge-sharing GeSe₄ tetrahedra in GeSe₂

Helmer Fjellvåg, Kjell Ove Kongshaug and Svein Stølen*

Department of Chemistry, University of Oslo, Postbox 1033 Blindern, N0315 Oslo, Norway. E-mail: svein.stolen@kjemi.uio.no; Fax: +47 22855441; Tel.: +47 22855601

Received 4th December 2000, Accepted 7th February 2001 First published as an Advance Article on the web 8th March 2001

points were collected between $2\theta = 10$ and 89.75°. Experiments were also conducted in Bragg–Brentano geometry. Comparison of the data showed that preferred orientation affects the measured intensities to a significant extent. This was taken as an indication of a chain or layered nature of the crystal structure.

ULL PAPER

The crystal structure of the new germanium selenide Ge_4Se_9 has been determined by powder X-ray diffraction. It shows a new feature for this class of compounds; corner sharing of tetrahedra *via* Se_2 dimers with short Se_2 bonds. Structurally, Ge_4Se_9 is related to $GeSe_2$ in that the edge-sharing tetrahedra in ambient pressure $GeSe_2$ are split by the introduction of Se_2 pairs.

Introduction

GeSe and GeSe₂ have long been considered to be the only binary compounds in the Ge–Se system. An apparently metastable germanium selenide has, however, been reported to form on thermal evolution of glasses with composition in the range 68 to 85 at.% Se. The phase appeared to be slightly Se-rich compared to GeSe₂ and electron probe microanalysis indicated a composition near Ge₃Se₇. It has recently been shown to be stable and to decompose peritectically to GeSe₂ and a liquid with $x_{\rm Se} = 0.85 \pm 2$ at 658 \pm 5 K. Electron probe microanalysis suggests the phase to contain 69.2 \pm 0.6 at.% Se and the experimental density of the phase is 4.37 g cm⁻³. It can be indexed using an orthorhombic unit cell with a = 7.003, b = 17.820 and c = 12.082 Å. The crystal structure of this new germanium selenide, Ge₄Se₉, is presently described and the structural relationship with GeSe₂ discussed.

GeSe $_2$ takes a structure with GeSe $_4$ tetrahedra as the main structural entity. The connectivity between the tetrahedra is unique, with 50% edge-sharing and 50% corner-sharing tetrahedra. The edge-sharing entities reduce the connectivity of the structure and GeSe $_2$ therefore has a two-dimensional structure. They and the layer like structure have also been reported for Ge–Se glasses, based on spectroscopy and diffraction measurements. A three-dimensional GeSe $_2$ modification with just corner sharing of tetrahedra is stable for pressures above ≈ 1 GPa. The connectivity between the main structure as two-dimensional diffraction measurements.

Experimental

DOI: 10.1039/b009794m

High-purity Se (99.999%) and Ge (99.999%) from Goodfellow Inc. UK were used as starting materials for the synthesis. The sample was prepared in evacuated and sealed vitreous silica ampoules. Stoichiometric amounts were annealed at 623 K for 240 h. Further details on synthesis and characterization have been published elsewhere.³

Powder X-ray diffraction data were collected in transmission geometry with a Siemens D5000 diffractometer using monochromatic Cu-K α_1 radiation (germanium monochromator) and a Braun position sensitive detector (PSD). The sample was put on a Scotch magic tape using a flat transmission sample holder, for which the zero point position was adjusted manually by means of earlier measurements on silicon powder. 5129 Data

Crystal structure analysis

The diffraction pattern was completely indexed using the program TREOR 90,10 suggesting a unit cell with dimensions a = 7.003, b = 17.820 and c = 12.085 Å, M(20) = 59. On the basis of the measured density, $\rho_{\text{exp}} = 4.37 \text{ g cm}^{-3}$, the unit cell was considered to contain four formula units of Ge₄Se₉ (calculated density 4.42 g cm⁻³). The related hexagonal solution $a_h = 2a$, $b_h = c\sqrt{3}$ and $c_h = b$ did not give a satisfactory Le Bail fit of the observed pattern, in particular at higher angles. Careful search for systematic extinctions indicated 0kl to be absent for k = 2n + 1 and h0l absent for h + l = 2n + 1, consistent with the space groups Pbn2₁ (33) or Pbnm (62). Integrated intensities were extracted with EXTRA.11 Structure solution was possible, although difficult, by direct methods (EXPO, 12 SIRPOW 13) and subsequent cycles of refinements and Fourier difference calculations. However, the Rietveld type refinements gave large displacement parameters for some of the atoms and the fit was not satisfactory. For that reason other space groups were considered. The correct solution was obtained for space group $Pca2_1$ (note; interchange of a and b axes, 0kl absent for l = 2n + 1 and h0l for h = 2n + 1). The direct methods approach immediately gave all the four non-equivalent Ge and nine nonequivalent Se atoms of the unit cell. This solution deviated only in certain details from the Pbn2₁ model.

Rietveld type refinements were performed with the GSAS program package.¹⁴ No distance restraints were introduced (however, such are absolutely required in *Pbn2*₁). The background was modelled using a 24-term cosine Fourier series polynomial and the peak shape was described by profile function #3 in GSAS, which allows asymmetry correction in the pseudo Voigt profile function. Details on the refinements are given in Table 1. Corrections were made for preferred orientation of the crystallites using the March–Dollase model implemented in the GSAS program. Atomic coordinates are listed in Table 2, selected interatomic distances and bond angles in Table 3. The fit between observed and calculated intensities is displayed in Fig. 1.

 $\label{eq:table_1} \textbf{Table 1} \quad \text{Experimental conditions and relevant parameters for Rietveld refinement of Ge_4Se_9}$

Pattern range 2θ/	° 10–89.75
Step size $\Delta 2\theta l^{\circ}$	0.015552 <i>a</i>
λ/Å	1.540598
Space group	$Pca2_1$
alÅ	17.8204(1)
b/Å	7.0029(1)
c/Å	12.0854(1)
Z	4
V / $ m \AA^3$	1508.2(2)
No. observations	5129
No. reflections	675
No. refined parar	neters 75
$R_{ m wp} \ R_F^{\ 2}$	0.039
R_F^{-2}	0.047
defined by the DCD setting	

^a As defined by the PSD setting.

Table 2 Refined atomic coordinates and displacements factors for Ge_4Se_9 . Calculated standard deviations are given in parentheses. U_{iso} are 0.022 Å² for Ge and 0.032 Å² for Se. z(Se7) is fixed to zero

Atom	х	у	z
Gel	0.2738(3)	0.8147(7)	0.1976(5)
Ge2	0.3303(2)	0.3135(7)	0.2059(5)
Ge3	0.4598(2)	0.6772(7)	0.1302(4)
Ge4	0.1477(3)	0.1798(7)	0.1444(4)
Se1	0.2550(3)	0.2989(6)	0.0529(5)
Se2	0.2865(2)	0.5612(4)	0.3333(5)
Se3	0.9927(2)	0.1710(6)	0.2985(5)
Se4	0.3203(2)	0.0415(5)	0.3278(5)
Se5	0.1476(2)	0.8402(6)	0.1505(5)
Se6	0.3507(3)	0.7984(7)	0.0400(4)
Se7	0.0533(3)	0.2587(7)	0.0000
Se8	0.4551(2)	0.3354(6)	0.1582(5)
Se9	0.1093(2)	0.3249(6)	0.2993(5)

Discussion

The crystal structure of Ge_4Se_9 contains two-dimensional layers that are bonded by weak van der Waals interactions along [001]. This layered nature explains the strong tendency towards preferred orientation. The unit cell of Ge_4Se_9 has clear similarities with that of monoclinic $GeSe_2^4$ ($P2_1/c$ with a=7.016, b=16.796 and c=11.831 Å, $b=90.65^\circ$). The 2D-layers of these structures are compared in Fig. 2.

The crystal structure of Ge_4Se_9 is based on tetrahedral $GeSe_4$ units that basically share corners. In one case the connection is made via a Se_2 pair. In monoclinic $GeSe_2$ basically the same layers and pattern of connected polyhedra exists. However, half of the tetrahedra form dimers by edge sharing. As can be seen from Fig. 3, the additional selenium in Ge_4Se_9 is introduced via Se_2 pairs that open up the edge-shared tetrahedra in $GeSe_2$.

The chemical formula Ge₄Se₉ can now be understood in view of the additional Se–Se pairs that connect neighbouring GeSe₄ tetrahedra. This structural feature is also known in the ternary germanium selenide based compounds K₂GeSe₄ and Rb₂GeSe₄ is and Cs₄Ge₂Se₈. ¹⁶ K₂GeSe₄ and Rb₂GeSe₄ contain infinite chains in which GeSe₄ tetrahedra are linked *via* Se–Se bonds, while Cs₄Ge₂Se₈ contains a dinuclear anion composed of two GeSe₄ tetrahedra linked *via* two Se–Se bonds.

 Ge_4Se_9 can be described as a valence compound $(Ge^{4+})_4$ - $(Se^{2-})_7(Se_2^{2-})$ with tetravalent germanium and divalent selenium as confirmed by bond valence calculations 17 (Table 4). The material is expected to remain semiconducting like $GeSe_2$. The Se–Se distance is 2.340(4) Å. This concurs well with findings in the mentioned ternary germanium selenides, 15,16 as

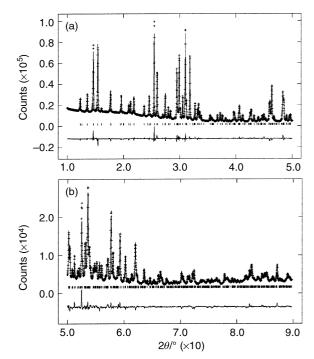
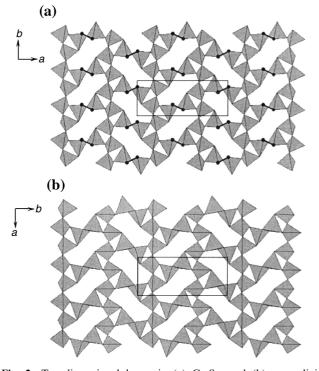
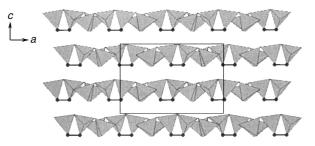


Fig. 1 Observed, calculated and difference intensity profiles for refinements of powder X-ray diffraction data of Ge_4Se_9 at 298 K ($\lambda=1.540598$ Å).




Fig. 2 Two-dimensional layers in (a) Ge_4Se_9 and (b) monoclinic $GeSe_2$. $Se_2^{\ 2^-}$ anion pairs are marked in black (a).

well with pyrite- and marcasite-type selenides with separations in the range 2.33 (CuSe₂¹⁸) to 2.54 Å (FeSe₂¹⁸).

Edge-sharing tetrahedra and a layer like structure have been proposed for Ge–Se glasses based on spectroscopy and diffraction measurements. ^{5,6} Ge–Se liquids with composition near GeSe₂ are strong glass formers and the main structural entities in the corresponding crystals are expected to be retained in the liquid. However, since Ge₄Se₉ decomposes peritectically to GeSe₂ and a selenium rich melt at 658 K, the new findings do not exclude edge-sharing tetrahedra in the melt. Temperature induced changes in the structure of the undercooled melt and corresponding differences between the structure of melts and

Table 3 Selected interatomic distances (Å) and bond angles ($^{\circ}$) for Ge_4Se_9 . Calculated standard deviations in parentheses

- 4 - 9		1	
Ge1–Se2	2.347(6)	Se2-Ge1-Se4	94.5(3)
Ge1–Se4	2.306(7)	Se2–Ge1–Se5	108.0(2)
Gel-Se5	2.327(6)	Se2-Ge1-Se6	115.6(3)
			. ,
Ge1–Se6	2.349(7)	Se4–Ge1–Se5	116.6(3)
		Se4-Ge1-Se6	109.6(3)
		Se5–Ge1–Se6	111.7(3)
Ge2-Se1	2.287(8)	Se1-Ge2-Se2	108.8(3)
Ge2-Se2	2.372(7)	Se1-Ge2-Se4	112.7(3)
Ge2–Se4	2.343(6)	Se1-Ge2-Se8	108.7(3)
Ge2–Se8	2.336(5)	Se2-Ge2-Se4	103.0(3)
002-300	2.330(3)		
		Se2–Ge2–Se8	116.4(3)
		Se4–Ge2–Se8	107.4(2)
Ge3-Se3	2.369(7)	Se3-Ge3-Se6	115.7(2)
Ge3-Se6	2.385(7)	Se3-Ge3-Se7	108.4(3)
Ge3-Se7	2.335(6)	Se3-Ge3-Se8	112.2(3)
Ge3–Se8	2.405(6)	Se6–Ge3–Se7	101.8(3)
GC3-5C0	2.403(0)	Se6-Ge3-Se8	111.5(3)
			` /
		Se7–Ge3–Se8	106.1(3)
Ge4-Se1	2.306(8)	Se1-Ge4-Se5	113.3(3)
Ge4–Se5	2.387(6)	Se1-Ge4-Se7	102.1(3)
Ge4-Se7	2.404(7)	Se1-Ge4-Se9	116.7(3)
Ge4-Se9	2.339(7)	Se5-Ge4-Se7	106.5(2)
30. 30	2.005(1)	Se5–Ge4–Se9	111.3(3)
		Se7–Ge4–Se9	105.7(2)
		307-004-309	103.7(2)
Se1-Ge2	2.287(8)		
Se1–Ge4	2.306(8)	Ge2–Se1–Ge4	99.1(3)
Se2-Ge1	2.347(6)		
Se2–Ge2	2.372(7)	Ge1-Se2-Ge2	101.4(3)
502-002	2.372(1)	GC1-BC2-GC2	101.4(3)
Se3-Ge3	2.369(7)		
Se3-Se9	2.340(4)	Ge3-Se3-Se9	90.9(3)
			. ,
Se4–Ge1	2.306(7)		
Se4–Ge2	2.343(6)	Ge1–Se4–Ge2	102.9(3)
Se5-Ge1	2.327(6)		
Se5-Ge4	2.387(6)	Ge1-Se5-Ge4	95.5(2)
~ . ~ .			
Se6-Ge1	2.349(7)		
Se6–Ge3	2.385(7)	Ge1–Se6–Ge3	97.0(3)
Se7–Ge3	2.335(6)		
Se7–Ge4	2.404(7)	Ge3-Se7-Ge4	95.1(2)
	. ,		. ()
Se8-Ge2	2.336(5)		
Se8–Ge3	2.405(6)	Ge2–Se8–Ge3	97.2(3)
Se9-Ge4	2.339(7)		
Se9–Se3	2.340(4)	Ge4-Se9-Se3	93.3(3)
	2.5 70(4)	304 507 503	73.3(3)

Fig. 3 Packing of 2-D layers and position of Se_2^{2-} anion pairs connecting $GeSe_4$ tetrahedra in Ge_4Se_9 . Projection of the structure along [010].

Table 4 Calculated bond valences for Ge₄Se₉

	Ge1	Ge2	Ge3	Ge4	Se3	Se9	Σ
Se1		1.19		1.13			2.32
Se2	1.01	0.94					1.95
Se3			0.95			1.06	2.01
Se4	1.13	1.02					2.15
Se5	1.06			0.90			1.96
Se6	1.00		0.91				1.91
Se7			1.04	0.86			1.90
Se8		1.04	0.98				2.02
Se9				1.03	1.06		2.09
Σ	4.20	4.19	3.88	3.92			

glasses should, however, be considered. Large temperature induced changes in the intermediate-range order in liquid GeSe₂ have recently been suggested based on neutron diffraction ¹⁹ and first-principles molecular dynamics.²⁰

The volume of Ge₄Se₉ is about 0.3% larger than that of a corresponding two-phase mixture of GeSe₂ and Se. Ge₄Se₉ is accordingly (assuming the bulk modulus to be equal for Ge₄Se₉ and a corresponding mixture of GeSe₂ and Se) destabilized by pressure.

References

- 1 A. B. Gokhale and R. Abbaschian, Bull. Alloy Phase Diagrams, 1990, 11, 257.
- 2 R. Azoulay, H. Thibierge and A. Brenac, J. Non-Cryst. Solids, 1975, 18, 33.
- 3 S. Stølen, H. B. Johnsen, C. S. Bøe, T. Grande and O. B. Karlsen, *J. Phase Equilib.*, 1999, **20**, 17.
- 4 G. Dittmar and H. Schäfer, Acta Crystallogr., Sect. B, 1976, 32, 2726.
- 5 N. Kumagai, J. Shirafuji and Y. Inuishi, J. Phys. Soc. Jpn., 1977, 42, 1262.
- 6 P. Vashista, R. K. Kalia, G. A. Antonia and I. Ebbsjö, *Phys. Rev. Lett.*, 1989, 62, 1651.
- 7 T. Grande, M. Ishii, M. Akaishi, S. Aasland, H. Fjellvåg and S. Stølen, *J. Solid State Chem.*, 1999, **145**, 167.
- 8 A. Grzechnik, S. Stølen, E. Bakken, T. Grande and M. Mezouar, J. Solid State Chem., 2000, 150, 121.
- 9 A. Grzechnik, S. Stølen, T. Grande, W. A. Crichton and M. Mezouar, to be published.
- 10 P. E. Werner, L. Eriksson and J. Westdahl, J. Appl. Crystallogr., 1985, 18, 367.
- 11 A. Altomare, M. C. Burla, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni and G. Polidori, *J. Appl. Crystallogr.*, 1995, 28, 842.
- 12 A. Altomare, M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Rizzi, *J. Appl. Crystallogr.*, 1999, 32, 339.
- 13 G. Cascarano, L. Favia and C. Giacovazzo, J. Appl. Crystallogr., 1992, 25, 267.
- 14 A. Larson and R. B. von Dreele, GSAS, LANSCE, Copyright 1985–1988 by the Regents of the University of California.
- W. S. Sheldrick and B. Schaaf, Z. Naturforsch., B: Chem. Sci., 1995, 50, 1469.
- 16 W. S. Sheldrick and B. Schaaf, Z. Naturforsch., B: Chem. Sci., 1994, 49, 655.
- 17 N. E. Brese and M. O'Keeffe, *Acta Crystallogr.*, Sect. B, 1991, 47, 192.
- 18 A. Kjekshus, T. Rakke and A. F. Andresen, *Acta Chem. Scand.*, Ser. A, 1974, 28, 996.
- 19 I. Petri, P. B. Salmon and H. E. Fischer, *Phys. Rev. Lett.*, 2000, **84**, 2413; I. Petri, P. B. Salmon and H. E. Fischer, *J. Phys.: Condens. Matter*, 1999, **11**, 10219.
- 20 C. Massobrio, F. H. M. van Roon, A. Pasquarello and S. W. De Leeuw, J. Phys.: Condens. Matter, 2000, 12, L697.